Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 134(4)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38127463

ABSTRACT

In a structure-function study of sulfatides that typically stimulate type II NKT cells, we made an unexpected discovery. We compared analogs with sphingosine or phytosphingosine chains and 24-carbon acyl chains with 0-1-2 double bonds (C or pC24:0, 24:1, or 24:2). C24:1 and C24:2 sulfatide presented by the CD1d monomer on plastic stimulated type II, not type I, NKT cell hybridomas, as expected. Unexpectedly, when presented by bone marrow-derived DCs (BMDCs), C24:2 reversed specificity to stimulate type I, not type II, NKT cell hybridomas, mimicking the corresponding ß-galactosylceramide (ßGalCer) without sulfate. C24:2 induced IFN-γ-dependent immunoprotection against CT26 colon cancer lung metastases, skewed the cytokine profile, and activated conventional DC subset 1 cells (cDC1s). This was abrogated by blocking lysosomal processing with bafilomycin A1, or by sulfite blocking of arylsulfatase or deletion of this enyzme that cleaves off sulfate. Thus, C24:2 was unexpectedly processed in BMDCs from a type II to a type I NKT cell-stimulating ligand, promoting tumor immunity. We believe this is the first discovery showing that antigen processing of glycosylceramides alters the specificity for the target cell, reversing the glycolipid's function from stimulating type II NKT cells to stimulating type I NKT cells, thereby introducing protective functional activity in cancer. We also believe our study uncovers a new role for antigen processing that does not involve MHC loading but rather alteration of which type of cell is responding.


Subject(s)
Natural Killer T-Cells , Neoplasms , Humans , Sulfoglycosphingolipids/metabolism , Antigens, CD1d/genetics , Antigen Presentation , Neoplasms/drug therapy , Neoplasms/metabolism , Sulfates/metabolism
2.
J Hematol Oncol ; 13(1): 125, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32943087

ABSTRACT

B cell maturation antigen (BCMA) is a novel treatment target for multiple myeloma (MM) due to its highly selective expression in malignant plasma cells (PCs). Multiple BCMA-targeted therapeutics, including antibody-drug conjugates (ADC), chimeric antigen receptor (CAR)-T cells, and bispecific T cell engagers (BiTE), have achieved remarkable clinical response in patients with relapsed and refractory MM. Belantamab mafodotin-blmf (GSK2857916), a BCMA-targeted ADC, has just been approved for highly refractory MM. In this article, we summarized the molecular and physiological properties of BCMA as well as BCMA-targeted immunotherapeutic agents in different stages of clinical development.


Subject(s)
B-Cell Maturation Antigen/antagonists & inhibitors , Immunotherapy , Molecular Targeted Therapy , Multiple Myeloma/therapy , Neoplasm Proteins/antagonists & inhibitors , Antibodies, Bispecific/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/therapeutic use , B-Cell Maturation Antigen/genetics , B-Cell Maturation Antigen/immunology , B-Cell Maturation Antigen/physiology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Clinical Trials as Topic , Humans , Immunoconjugates/therapeutic use , Immunotherapy, Adoptive , Multicenter Studies as Topic , Multiple Myeloma/immunology , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Neoplasm Proteins/physiology , Plasma Cells/drug effects , Plasma Cells/metabolism , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/immunology , Randomized Controlled Trials as Topic
3.
Oncoimmunology ; 8(10): e1625687, 2019.
Article in English | MEDLINE | ID: mdl-31646070

ABSTRACT

The benefits of anti-cancer agents extend beyond direct tumor killing. One aspect of cell death is the potential to release antigens that initiate adaptive immune responses. Here, a diffusion enhanced formulation, INT230-6, containing potent anti-cancer cytotoxic agents, was administered intratumorally into large (approx. 300mm3) subcutaneous murine Colon26 tumors. Treatment resulted in regression from baseline in 100% of the tumors and complete response in up to 90%. CD8+ or CD8+/CD4+ T cell double-depletion at treatment onset prevented complete responses, indicating a critical role of T cells in promoting complete tumor regression. Mice with complete response were protected from subcutaneous and intravenous re-challenge of Colon26 cells in a CD4+/CD8+ dependent manner. Thus, immunological T cell memory was induced by INT230-6. Colon26 tumors express the endogenous retroviral protein gp70 containing the CD8+ T-cell AH-1 epitope. AH-1-specific CD8+ T cells were detected in peripheral blood of tumor-bearing mice and their frequency increased 14 days after treatment onset. AH-1-specific CD8+ T cells were also significantly enriched in tumors of untreated mice. These cells had an activated phenotype and highly expressed Programmed cell-death protein-1 (PD-1) but did not lead to tumor regression. CD8+ T cell tumor infiltrate also increased 11 days after treatment. INT230-6 synergized with checkpoint blockade, inducing a complete remission of the primary tumors and shrinking of untreated contralateral tumors, which demonstrates not only a local but also systemic immunological effect of the combined therapy. Similar T-cell dependent inhibition of tumor growth was also found in an orthotopic 4T1 breast cancer model.

4.
Blood ; 127(26): 3398-409, 2016 06 30.
Article in English | MEDLINE | ID: mdl-27114459

ABSTRACT

Recently, interactions between thrombopoietin (TPO) and its receptor, the myeloproliferative leukemia (MPL) virus oncogene, have been shown to play a role in the development and progression of myeloproliferative neoplasms including myelofibrosis (MF). These observations have led to the development of strategies to disrupt the association of TPO with its receptor as a means of targeting MF hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs). In this report, we show that although both splenic and peripheral blood MF CD34(+) cells expressed lower levels of MPL than normal CD34(+) cells, TPO promoted the proliferation of MF CD34(+) cells and HPCs in a dose-dependent fashion. Furthermore, the treatment of MF but not normal CD34(+) cells with a synthesized MPL antagonist, LCP4, decreased the number of CD34(+)Lin(-) cells and all classes of assayable HPCs (colony-forming unit-megakaryocyte [CFU-MK], CFU-granulocyte/macrophage, burst-forming unit-erythroid/CFU-erythroid, and CFU-granulocyte/erythroid/macrophage/MK) irrespective of their mutational status. In addition, LCP4 treatment resulted in the depletion of the number of MF HPCs that were JAK2V617F(+) Moreover, the degree of human cell chimerism and the proportion of malignant donor cells were significantly reduced in immunodeficient mice transplanted with MF CD34(+) cell grafts treated with LCP4. These effects of LCP4 on MF HSCs/HPCs were associated with inhibition of JAK-STAT activity, leading to the induction of apoptosis. These findings demonstrate that such specific anti-cytokine receptor antagonists represent a new class of drugs that are capable of targeting MF HSCs.


Subject(s)
Hematopoietic Stem Cells/metabolism , Primary Myelofibrosis/drug therapy , Receptors, Thrombopoietin/antagonists & inhibitors , Aged , Amino Acid Substitution , Animals , Antigens, CD34/genetics , Antigens, CD34/metabolism , Female , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/pathology , Heterografts , Humans , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Male , Mice , Middle Aged , Mutation, Missense , Primary Myelofibrosis/genetics , Primary Myelofibrosis/metabolism , Primary Myelofibrosis/pathology , Receptors, Thrombopoietin/genetics , Receptors, Thrombopoietin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...